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The problem of det~r~~g the smallest number of contr&ing forces necessary to sta- 
bilize she motion of a cotitrolied object is investigated. The necessary and sufficient 
condition of stabilizability of the zero solution by the control of minimal dimensionalit)r 
is established for linear systems. The sufficiency criterion is extetrded to nonlinear sys- 
terns. An example is considered. 

1, Potmulrtfoa of the pt.oblata, Let us consider an object whose state is 
described by the phase vector zc (t) = (q (t) } ( i = 1, . . . , n) and whose motion is 
described by the differential system 

dz i dt = f (z-f, f (0) EE 0 

where f is a given n-dimensional vector function. 
We assume that the object is controllable by a force u = {Uj} (1 = 1, . . . , r) 3 

where r is some number, and that the control function is variable. Let ihe controlling 
forces Uf,be related to the coordinates xi by the vecmr differentiaX equation 

& /’ dt = f b) + cp (2, u). cp (5, 0) = 0 U-1) 
where 9 is some n-dimensional vector function. 

Our problem consists in determining the smallest number of controlling forces neoes- 
sary to stabilize the zero solution of system (1.1) with suitable choia of rq. If r is this 
number and ‘pO is the. correspcutding function, thun there exisu .a~ r-dimensional corm01 
u which stabilizes the solution x 5 0 of system (1.1) for p = cpo ; moreover, it is then 
impossible to find a function cp for which the solution 2 zz 0 of system (1.1) can be 
stabilized by means of an (t - l)-dimeruioaal control. 

2, The rolutton of the problem ia llnrrt &ppto~~~&t~~~~. The 
linear approximation for Eq. (1.3) is of the form 

dx I dt = Ax +Bu (2.1) 
The matrix 4 defines the linear operator A in the n-dimensional linear space 

R {%..., XII} . 5 The folIowing theorem ‘h&k+ El% 
The space R can always be decomposed into the subspaces It, . . . . It q$fCal reia- 

tive to the given llnear operator A with the minimal polynomfals 91 @), . . . . qt (h) . 

l-2 = I, + t.. +f, 

in such a way that *z(h) coincides wit& the minimal polynomial 1 (h) of the entire 

space and every qt (h) is a divisor of qpi_1 (h) (i = 2, 3, . . . . t). 
Denoting the invariant polynomials of the ma&x A. by <I (A).,_ . . . , e, (h) , we find 



Number ot contlols necessary to stabilize the equilibrium position 757 

Here Di (h) denotes the largest common divisor of all the ith order minors of the 
characteristic matrix A% = A - hE,where &is an identity matrix(i = 1, . . . . n). 

Let us suppose that all the roots of some D,,, (h) have negative real parts. We can 

show that system (2.1) can then be stabilized by an r-dimensional control with suitable 

choice of the matrix B. 
l_.et bi be the generating vector of the cyclical subspace It. The vectors bs, A b;, . . -3 

Amivl bi , where mi is the power of qr (h), are then linearly independent and form the 

basis Ii (i = 1, . . . . t). As our matrix B we take the matrix 

B = 11 bl, b,, . ..t brll (2.2) 
and consider the matrix 

I’=[1 bl, Abl,. . .,Am~-lbl, b,, Ab9,. . .,A”+lb*,. . .,b,, . . . . Am+b,, p@+l),. . . ,p’“j 

a=ml+...+m, (2.3) 
The vectors p(O+l), . . . , pn are such that det P # 0. The vectors p can always 

be chosen in an infinite number of suitable ways, since the vectors b,, A b,, . . . . 
Amp-l b, are linear1 y independent. Let us transform coordinates by means of the equa- 

tion 2 = Py. In the new coordinates system (2.1) can be written as 

y’= P-lAPy + P-lBu (2.4) 

The matrix P-‘AP is the matrix of the operator A in the new basis 

b 1, . . . . Aml-l b,, . . . . A”r-’ b,, p@+l), . . . . $“). 

Denote the h th vector of this basis by flk.The kth column of the matrix P+AP is filled 
by the coordinates of the vector Ag,. But Ag, E I, for k eG ml , since II is an inva- 
riant subspace. so that the last n - ml coordinates are equal to zero. Similarly, for 

ml < k < ml + m, the first mland the last R - (ml + ms) coordinates of Ag, 
are equal to zero, etc. Hence, the matrix PIAP is of the form 

PI 0 . . . 0 

Lo= ’ ” . ’ ’ 
0 

(2.5) 

d b’ : : : P, 

and the characteristic polynomials of the matrices P,, . ..( P, me % (V, ..-,$, (% 
since the characteristic polynomial of the operator A in the case of cyclical subspaces 
coincides with the minimal polynomial of the subspace relative to this operator. The 

matrix P-‘R=~Cij~ (i=i,...,n;i=l,..., r) 

consists of zeros and unities, which is evident from the relation P-lP = E. Let us 
write out the nonzero elements Cij , 

Cl1 = I9 cmnlti,s = 1~ Cmltm++1,3 = 1, . . . 9 Cm,t...tm, +I r = 1 
-1 ' (2.6) 

System (‘2.4) breaks down into an unconuollable part 

dy@) / dt = L&2), ti2)’ = UIclt19 * * * 9 &In (2.1) 

and a conuollable part, which in turn consists of the nonhomogeneous systems 

&cj) / & = pig(i) + Ujej + f(j) (@)) 0’ = 1, ..-, r) w3) 

l&j,“‘* = IUTtS*t...ttLj_~tlV . - - 9 !lmtt...mj~v ej* = U  1* O *  * - *v  Ol 
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Here jtjl (ti 1) s is an mj-dimensional vector function whose coordinates are linear 
forms of the coordinates of the vector #‘J); the asterisk denotes transposition. 

The matrix P,corresponds to the operator A in I, for the basis b,,Abj,. . . , A”?-’ b, 
(i = 1, . . . . ?). Hence, 

000 . . . o-i, 
100 . . . 0 -aLJ_l 

P 0 10 . . . 0 -a&, 
. . . . . . . . . . . . 

II 000 . . . l-a,’ 

(2.9) 

Here ali, . . ., 
subspace 11, 

a’m, are the coefficients of the minimal polynomial $1 (h) of the 

~j (A) = h”j f aihmJe’ f - . - dj 

If we set 
uj 

i 
= piYm,+.-+mj_l +1+ *-* +~jElmrt'.'+mj 

then, by suitable choice of the coefficients l.r , we can ensure that the characteristic 
polynomial of system (2.8) has any prescribed roots with negative real parts. 

Thus, any solution of initial system (2.1) can be reduced at the origin by an r- dimen- 
sional control only if the zero solution ya,l = . . . = y, = O’for the uncontrollable 

part of system (2.7) is asymptotically stable. This is the case if and only if the charac- 
teristic roots of the matrix L, have negative real parts. But 

where E,,_, is an (n - a) X (n - a) identity matrix. 
On the other hand, 

D (V 
$1 (h) . . . qb(J”) = -$-Jo = dey-(:,“” 

Hence 
det If L, - A&,, II= D,_, (A) (2.10) 

We have thus shown that if all the roots of D,_, (h) have negative real parts, then 
there exists a matrix B for which asymptotic stabilization of the zero solution of system 

(2.1) is possible. We have assumed implicitly that r < t . but if r > t, then, since 
ml + . . . +mt = n, it follows that the zero solution can be stabilixed at least by 

means of a t-dimensional control. This follows from the fact that the matrix Lz does 
not exist in this case. 

Now let us show that if D n_r+l (h) has at least one root with a nonnegative real 

part, then asymptotic stabilization by a p-dimensional (p < r) control is impossible 

for any n X p matrix B,. 
Let us assume the opposite statement, i. e. that there exist vectors 6,, . . . , b,*such 

that the zero solution of the system 

&/dt = AZ + BP+,, B,=lIbl, . . . ,b,II (2.11) 
is stabilizable. 

The vectors bt, . . . . bp can be regarded as linearly independent; otherwise the con- 

trol would in fact be k-dimensional, where k < p. Let us consider the subspace defined 
by the (not necessarily linearly independent) vectors 
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b,, Ah, . . . , An-lb1 

ba, Ab.2, . . . , A--lb* 
. . . . . . . . . . . . . 

b,, Ab,, . . . , A-lb, 

This subspace is invariant relative to the operator 4. Consequently (by virtue of the 
third theorem on splitting Cl]) it can be split into cyclical invariant subspaces which 
cannot be split any further and whose minimal polynomials (which are also the charac- 
teristic polynomials) coincide with some of the factors in the expansion of 91 (h), . . . 

I.. $,,(A) 
$1(X) = (A - %)"'(A - &y' . . . ,(A - h,)CJ 

$2&) = (A -,%f'(h - A#' . . . (a - hJ)dJ 

. . . . . . . . . . . . . . . . ...* . . . 

%@) = (A- &)" (A-- A,)" . . . (h- h,)'J 

~~~.d~>. . . >lIk 6 = 1, . . . , s) 

Here h,, h,, . . . ,, & are distinct roots of the equation det, 11 A - hE 11 = 0. 
Since ‘the expansion of an invariant subspace contains “cells” with minimal polynomi- 

als which are powers of relatively prime monomials, let us say (h - At)” and (h - 

- UC% it follows that the invariant subspace which is the direct ;um of these cells is 
cyclical. In fact, if the generating vectors of the cells are e, and e,, then the vectors 

et, A+, . . . , Adl-‘el, e2, Aen, . . . , Acy1e2 
can be taken as the basis of the direct sum. 

The matrix corresponding to the operator A in this basis is of the form 

K 
Kl 0 1 

O= 0 KJ I I 
where the matrices K1 and I& are of the same type as matrix (2.9). 

By elementary transformations we reduce the matrix 11 K, - hEa,+J, where Ed,+ct 
is a (d, + c2) ‘x (d, + c2) identity matrix, to the equivalent matrix 

where 

1 UK’ O II 0 K21 

10 . . . 0 io... 0 

K1l= Oi -** O ) K21,= O i * * * 
0 

. . . . . . . . . . . . . . 

0 0 . . . (h-hip 0 0 . . . (?b-luhzp 

The characteristic polynomial is (h - hI)d* (h - A,@, and the largest common 
divisor of the minors of order (d, + c2 - 1) 
the minors (h - hJdl and (h 

is, clearly, equal to unity, since we have 
- A,$* which are relatively prime. Hence, the charac- 

teristic polynomial of the direct sum of the cells under consideration coincides with the 

minimal polynomial ; in other words, this direct sum is a cyclical subspace, since the 

degree of its minimal polynomial coincides with its dimensionality and the proposition 
in question has been proved. 

However, if the cyclical cells have elementary divisors corresponding to the same 
root as their characteristic polynomials. then the invariant subspace which they form is 
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not Cyclical, i.e. it is generated by at least two vectors and their images under the ope- 
rator A which are linearly independent of their originals. 

In fact, let US assume that we have taken cells with the characteristic (and minimal) 
polynomials (h - hI)Cl and (A - hJdl (cr > d,) and the generating vectors aI and 
OS , respectively. The characteristic polynomial of the direct sum of the cyclical cells 
under consideration is the product of (3L -&)cl and (h -I,#. But it is clear that we 
can take (A - &r)d* as the nullifying polynomial for the whole subspace, since it nulli- 
fies both cells. However, its power is cr ( cr + d,, and the space cannot be cyclical, 
since its minimal polynomial, being a divisor of any nullifying polynomiaLis of a degtee 
smaller than the dimensionality of the subspace. 

The foregoing implies that whatever the vectors 6r, . . . , bp, the characteristic poly- 
nomial x (h) of the invariant subspace defined by them and their images A 6,, . . . , 
An-’ b 1, ***, A”-’ b p cannot contain more than p elementary divisors corresponding 
to the same root, i. e. that x (A) is a divisor of the polynomial $r (h)qs (A). . _ qP (h). 

Let fi* . . . , fq be the basis vectors of the invariant subspace in question. Let us com- 
plement them to the basis throughout the space by adding the vectors fq+l, . . . , f,, . 
Finally, let ILS cornrider the matrix 

cf, = II fr, fs, ***, fq, .-*I fn II 

Let us carry out the transformation of coordinates z = CDy. System (2.11) now 
becomes dy ldt = WIA(Dy + W’B,u, (2.12) 

As with (2.5), the matrix (P-‘A@ becomes 

@-‘A@ = ; ; 
I I a 

and system (2.12) breaks down into controllable and uncontrollable parts. The quantity 
(ps is the matrix of the uncontrollable part. We can show that its characteristic polyno- 
mial is divisible by Dn_r+: (h) , and therefore (by virtue of the above assumption con- 
cerning D ,,_r+t(J,) ) has at least one root with a nonnegative real part. This means 
that the uncontrolIable part of the system is not asymptotically stable and proves that 
a pdimen&nal (p ( r) conuo~ cannot effect asymptotic stabillaation of the zero 
solution of system (2.1) if Dn_r+l (A) has a root with a nonnegative real part. 

In fact, 

det(A - jJ+ &jt[@-lAQ, -hE[= q,,(h) . . . &(h). . .%-I@) . . - 

. . . q+ (h) = x(X) det II @S - hzn-q 1 

where E,,, is an (n - q) x (n - q) identity matrix. But 

%(A). * . *r-1 (1) * * . q+ (h) = $1 (h) . . . q,r-t (h) D--r+1 (A) 

since x (X) divides q1 (;1) . . . t&, (A) (as was shown above), and since p < t, it fol- 
lows that X (A) also divides tpi (A), . .%_I (A), i. e. that 

det 1 Qs - hE,, I= &-,+I (h) 8 (A) 
where e (A) is 5om polynomial. 

The above rfmlts imply the following statement 
Theorem 2. 1. The zero solution of system (2.1) can be ~iIq%Oti~liy stabi- 

lized by in r-dl~nsional control for some chosen matrix B and cannot be staw=d 
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byan (r- 1) -dimensional control for any B if and only if all the roots of the largest 
common divisor D,,, (h) of the (n - r)-th order matrices 11 d - hE If have nega- 
tive real parts, or if and only if D,_, (h) zz 1, and Dn_r+l (A) has a root with a 
nonnegative real part. 

This theorem has been formulated for the case of asymptotic stability. If we are con- 
cerned with the stabilization of the zero solution of system (2. I) to stability only, we 
must require that all the roots of D,_,(h) have nonpositive real parts, that the charac- 
teristic roots with zero real parts have simple elementary divisors only, and that 
D ,+r+l(h) have either a root with a positive real part or a root with a zero real part 
and a nonsimple elementary divisor. 

The above theorem is related to p- 53 in self-evident fashion. The latter studies show 
that if the matrix B in (2.1) is such that under the transformation x = Py the matrix 
L, of the ~~n~ollab~ part of the system in the new variables has roots with negative 
real parts, then it is possible to ensure asymptotic stabilization of the zero solution of 
(2.1) with suitable choice of the control U. Theorem 2.1 establishes the necessary and 
sufficient properties which the matrix A must have in order for a matrix B containing 
the minimum order of columns and having the above property to exist. 

8. Thr CAB@, of & aoalln8rt ryrtrm, Let us suppose that the function 
f (2) in (1.1) is of the form 

f (z) = Ax + i (4 (3.1) 

where A is an n x n matrix and g (z) is the n-dimensional vector function (gt (z)} 
(i = 1, . . . . n) ; moreover, g, (3) begins with terms of order not lower than the second. 

Theorem 3. I. The zero solution of system (1.1) for (3.1) can be,asymptoticaliy 
stabilized by an r-dimensional control if all the roots of the largest common divisor 
D,_,(h) of the (n-r)4 order minors of the matrix 11 A L hE 11 have negative real 
pm, or if D,_,(k) 3 1. 

In fact, let us’choose the matrix B as in (a. 2) and effect the transformation of varia- 
bles 5 = Pg, where P is the matrix defined in (2.3). Let us consider the system 

dx/dt f3.2) 
or, in the new variables, 

= Ax+g(x)+Bu 

dy/dt = P-IAPy f P-‘g(Py) + P-I& 

where P-l A P and P-Al3 are of the form (2.Q (2.6). respectively. 
System (3.2) breaks down in two parts 

dytl)/dt = Loy’2f + L,y@) .+ Clu -+ [P-lg (Py)]@, 

dy@)/dt =: L,y@J _t [P-ig((Py)]@) (3.3) 

where the superscript “(I.),, refers to the first (m, + . . . + m,) coordinates and the 
super!Eript “(2)” to the last n - (ml + . . . _t m,) coordinates. By C, we denote the 
matrix 

(P-B)* = 11 c,*, 0 11 
Setting u = Mrjif, where M is an r y, fm, + . . . + m,) matrix. we can. by suit- 

able choice of H, ensure that the matrix (La + C&M) has arbitrary characteristic 
roots, including roots with negative real parts. Since we assumed that ail of the roots of 
D n_r (ii) have negative real parts, it follows by (2.10) that the first approximation of 
(3.3) is asymptotically stable ; this imples the asymptotic stability of the zero solution 
of system (3.2). 
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To complement Theotern 3.1 we can say that if Dn_r+l (h) has at least one root 
with a positive teal past, then stabilization (not only asymptotic) by a (r - ‘i)-dimen- 
sioaal contzoi is impossible. The validiry of this -statement is self-evident from the con- 
sideration of Sect. 2. 

4. Zxrmplr. Let us consider a satellite in circular orbit. The equations of motion 
( ISI, Chawt 2) ate 

ail= ajpps - ai3pt + ejOajl (12 3)) (i = 1.8) (4.1) 

ifi=& ej = { : ij= 13)) (se) 
= 

Here Jr, J,, J, ate the principal centtal moments of inertia, a&i = 1, 3, k = 1, 2. 
3) ate the relative direction cosines, and o is the angular veiwity of the ccmter of mass 
along the orbit, The symbol (i 2 3) means that the two other equations are obtainabie 
by cycltc permutation. 

These equations have the particular solution 

PI = Ps = 0, p2 = 0; au = as3 = 1, ql = a2s = asI = cc* = 0 (4.21 

Out task is to ffnd the minimum number of controls required to render solution (4. ‘2) 
asymptotically stable. 

Taking (4.2) as the unperturbed motion and retaining the symbols for the initial vari- 
ables in designating the perturbations, we can write the linear approximation for the 
equations of perturbed motion in the form 

pl’= hNpa - 3othsaas, hns = (A --s)fJl (4.3) 
ps“ - 3o%lasi, hsr= (33 -Ji)/J3 

ps'=htsop~, hl, = (Jl - Jz) / Js 
a31. = - p + 0011 - Wmi, Ull’ = -Wu13-Wxs1 
aa’ = pl + mt, ult’ = - pt - 0agB 

a33’ = cmsl + @Qls, cm’=: pa + 6m11- OCLSS 

The last six equatious are not independent ; the CQ ate related by the expressions 

(1 + c+fa -I- a212 5 a%2 - 1 = 6 

a331+ a333 + (1 + cc3313 - 1 = 0 

These relations enable us to determine three of the CQ (i = 1, 3, k = 1, 2, 3) as WC- 
tions of the rest. For example, if the perturbations \a,,I, I%& i%! *are not too large. 
then we can take q,, aSI, use as the independent vziriables. 

The variables a13, aS3, aI1 can then be expressed in terms of the above variables, and 
the expansions begin with term of higher than the second order of smallness. This 
enables us to take the equations 

pi = &Op3 - 3~2~22~2~. pz‘ = -3021a,,C+, P.J’ = h,*oP, 

a’12 = -p3 - wu22, 231 
*z=z ---PZ, as2’ = Pl + =+d 

as the linear approximation of (4.1). 
The characteristic matrix of this system is of the form 

(4.4) 
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(4.5) 

Ifweassume !zis=fLE9= 0, this matrix is equivalent to a diagonal matrix with the 
elements %j = 0 (i # j), ali = asp = aas = f 

ad, = ab6 = X, am = b4 + 0W 

and in this case the xero,solution of system (4.4) can be a~mp~ti~lly stabilized by a 
three-dimensional control in accordance with Theorem 3.1, since Da m 1. 

If 4, = 0 but hr, # 0, the characteristic matrix is equivalent to the diagonal matrix 

aij = 6 (i # i), ari = %s = ass = a, = as5 = i 

add = p(p I 36Ph~f(i + lie I 08 - 3hs#) 

and the zero solution of (4.4) can be stabilized by a single control, since D6 = 1. 

If 4, # 0 and 3J%(3&l+ 3& + 1 - h&X4) - *s&s = 0 (4.6) 
the characteristic matrix can be transformed to the diagonal form 

aij = 0 (i # i), alI = 0% = aa = au = 1, ab5 = (A* - 361%~) 
aq = (3,p - 3@&r)I~2 + e%%s + f - S2hos + 4w2h2&Jl 

and by virtue of Theorem 3.1 and the fact that D, = f , a tw~dirne~~al control is 
sufficient for asymptotic stabilization. 

Finally, if & # 0 and relation (4.6) is not fulfilled, the characteristic matrix assumes 
the canonical form aij = 0 fi _+ i) “u E as2 = ass = a, = a,, = i 

aw = (A2 - 3osj&4 + oY3& + I - &&2,)~s - 4@‘&l&a,,l 

and, since D, = 1 , the zero solution of system (4.4) is asymptotically stabilized by a 
single control in the most general case. 

In practice, however, the control of minimal dimemi~al~~ can be realized only if 
the last three coordinates of all the vectors b of matrix (2.2) are equal to zero, since 
the last three equations of (4.4) are obtainable from the kinematic relations and cannot 
contain conl~~ols. Such choice of the vectors 6 is possible in all the cases considered 
above. We can demonstrate this directly. 

For example, let hrz = h,, = 0. Matrix (4. 5) then becomes 

In this case the stabilizing control is three-dimensional, and matrix (2.2) becomes 

B = 1 h ba bs II 

We use the symbols b$‘), b{s) to denote 

‘!,‘I’ = (1 bli b%i bSj 117 bli)* = 11 bbi bbi b,,$ 11 

Matrix (2.3) for bi2) = 0 is of the form 
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Since the characteristic polynomial of the matrix ]IA,, - U 11 coincides with its 
minimal polynomial, there exists an nonzero vector c(l) such that 

det u &)A,&) Aas do 11 # 0 

se-g Asbi” = c(l), bf”’ = AZ CT(~), we see that it is always possible to ensure that 
det P # 0 by suitable choice of 6$;’ and bf). Hence in this case L1 becomes 

B= 
bil) b(zf) bil) 

0 0 0 

If 4% = 0, $, # 0, matrix (2.3) for b@) = 0 is of the form 

Pll = 4, Ptr = JwJ&, PI3 = --3&3~3k* PI4 - 3~3~3~i - M t3 

PlS = 3h,@‘I3hs, + if 4, PU = %3oW23 + 11 (1 - S3) 13, pa = 12 

p23 = -%3~=1?1 p24 = %S2m412, p3l - 13, 

?J42 = ht PI3 = w23 - 1) l,, pu = -a343 + i) Il, pea = o3 I3hg + 1)(1 - 43) 2, 

P&3 = a4(343 + I)3 2~ Pa = -4, PM = 343o%, p56 = --sf& @"a, 

P42 = --I,, P43 = -@L P44 = WY1 - k,) 13, pas = @3(3&3 + 1) 1, 

= e343 + iw - 43) 13 

det P = f~k&@l&~&(h. - I)%? + (ha + 3&2)Z13j 

where only the nonzero elements have been included. 
Clearly, we can always ensure that det P # 0 by suitable choice of 4, ft, l3 , 
All the remaining cases can be verified in similar fashion. It furns out that the con- 

trol of minimal dimenaianality can always be found in the form necessary for practical 
realization. 

The author 1s grateful to V, V. Rumiantsev for stating the probEem and for his com- 
ments and interest. 
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